
Wire Cell Software Rewrite

Brett Viren
Physics Department

BNL Local Meeting 2015 Sep 14

Outline

Packages

Execution Model

Build

Still To Do

Brett Viren (BNL) Wire Cell September 14, 2015 2 / 20

Packages

Packages

The “productions” packages are now at:

https://github.com/wirecell

• wire-cell-bee, django/JS for Bee event display
• wire-cell-build, top-level C++ build package for:

• wire-cell-util
• wire-cell-iface
• wire-cell-gen
• wire-cell-alg
• wire-cell-dfp
• wire-cell-sst
• wire-cell-rio
• wire-cell-riodata
• wire-cell-rootdict
• wire-cell-docs

Brett Viren (BNL) Wire Cell September 14, 2015 3 / 20

https://github.com/wirecell

Packages

wire-cell-util

• Holds general C++ utility code.
• Depends on no other Wire Cell package.

Some highlights:

Units system of units
Testing Assert(), memory usage, CPU time
Iterator abstract iterator

Quantity simple propagation of uncertainties
3D Vector object and operators (dot, cross, *, /, +, -)

IndexedSet ordered, unique, random access indexed objects
Configuration component config via boost::property_tree

NamedFactory plugin instance construction

Brett Viren (BNL) Wire Cell September 14, 2015 4 / 20

Packages

wire-cell-iface
iface = interface:

• Pure abstract base classes.
• Implementations are not exposed.

• The calling API for Wire Cell.
• On one side: what LArSoft might code against.
• On the other: what Wire Cell implementations code against.

• Pervasive use of shared_ptr<>.
• No memory-management hassles.
• Will have to check performance.

Some highlights

nouns IData: wires, cells, blobs, depositions, diffusions,
frames, (and eventually slices, tracks, particles.

verbs producers/consumers of IData: wire generator, cell
maker, framer, digitizer, diffuser, ...

Brett Viren (BNL) Wire Cell September 14, 2015 5 / 20

Packages

wire-cell-gen

The generator / simulation parts of Wire Cell.

Some highlights:

wires parameter driven wire geometry generation.
cells “bound cell” alg, fast graph-based lookup.

depos depositions: generating, drifting, diffusing.
slices time slices on wires and channels

frames forming frames from slices and vice versa

Brett Viren (BNL) Wire Cell September 14, 2015 6 / 20

Packages

Work in progress

wire-cell-* packages still needing much work:
alg all the actual wire cell reconstruction algorithms.

Package exists, but except for hit cells finder (aka
ToyTiling), empty.

sst celltree geometry and data file reader, in repo,
needs porting, needs some interface work.

rio native Wire Cell ROOT input and output, ditto.
... your package here.

Brett Viren (BNL) Wire Cell September 14, 2015 7 / 20

Execution Model

Packages

Execution Model

Build

Still To Do

Brett Viren (BNL) Wire Cell September 14, 2015 8 / 20

Execution Model

Some questions about “execution model”

What is an execution model?
• How are units of execution defined?
• What drives their execution?
• How are they isolated and how are they coupled?
• Do they run in asynchronously? In parallel?
• How do they access existing data?
• How do they contribute new data?
• How much data exists in memory at once?
• Are there more than one answer to each of the above?

Brett Viren (BNL) Wire Cell September 14, 2015 9 / 20

Execution Model

Data Flow Programming (DFP)

The path to fine-grained parallelism while
retaining simplicity?

• A graph of compute vertices connected by
data edges.

• Vtx has well defined input/output data types.

• Edges can be thread-safe queues.

• Graph-level programming.

• Can minimize necessary data buffering.

• Graph machinery replaceable: uniproc,
multiproc, or distributed (MPI) parallel.

• Encourages isolated, targeted development
and testing of each compute vertex.

IWireParameters

IWireGenerator IDiffuser

IWireVector

ICellMaker IDigitizer

ICellVector

IChannelCellSelector

IDepositor

IDepo

IDrifter

IDepo (drifted)

IDiffused

IPlaneDuctor

IPlaneSlice

IChannelSlice

IFramer

IFrame

ISlicer

ICellSlice

IBlobMaker

ICellSlice (blobed)

IMatrixSolver

ICellSlice (solved)

IClustering

IClusterVector

ITracking

ITrackVector

IFrameDataSource

Brett Viren (BNL) Wire Cell September 14, 2015 10 / 20

Execution Model

Execution Model Interface

Implementation

Processor

ExecutorEach vertex in the DFP graph is
conceptually a set of concentric circles:
implementation the “guts” of an algorithm with largely

unrestricted interface.
processor implementation-specific adapter to outer layer.
executor an execution-model adapter, handles graph

definition, drives execution, interface to external
execution (ad-hoc, Boost.Pipeline, TBB, MPI, LArSoft).

Common patterns exist at each layer and are exploited to
provide simple, reusable base classes for most cases.

Brett Viren (BNL) Wire Cell September 14, 2015 11 / 20

Execution Model

Example: single input / single output
template<typename InputType, typename OutputType>
class IConverter { public:
typedef InputType input_type;
typedef OutputType output_type;

// Accept an data object for input.
// Return false if unable to accept.
virtual bool insert(const input_type& in) = 0;

// Extract one output data object.
// Return true if "out" was set successfully.
virtual bool extract(output_type& out) = 0;
...

};

• Accepts single input type, produces single output type.

• Covers most of the required cases.

• Input and output are separate calls: not synchronous!

• In general, internal buffering needed.

Brett Viren (BNL) Wire Cell September 14, 2015 12 / 20

Execution Model

Buffering Protocol (example continued)

template<typename InputType, typename OutputType>
class IConverter {
...
// Unconditionally purge all internal buffers.
virtual void reset() = 0;

// Flush any remaining input buffers so they are ready for output.
virtual void flush() = 0;

// Return an instance of a data object which compares to an
// end of stream marker. Implement this if the default
// output_type instance does not make a suitable EOS marker.
virtual const output_type& eos() { ... }

};

• External reset() and flush() signals.

• Allows data stream to be random accessible.
• End-of-stream (EOS) marker sent out after last output object.

Brett Viren (BNL) Wire Cell September 14, 2015 13 / 20

Build

Packages

Execution Model

Build

Still To Do

Brett Viren (BNL) Wire Cell September 14, 2015 14 / 20

Build

Source/build Changes

• New GitHub org for “production” code:
https://github.com/wirecell

• New MkDocs site:
http://wirecell.github.io/wire-cell-docs/

• New tool: wcb (= “Wire Cell Build”)
• wcb = waf + waf-tools
• delete waf-tools package
• same usage: wcb [...] configure build install

• Otherwise, everything is the same.
src/ library code
inc/ public headers for library

tests/ write them as you develop!!!
apps/ I want to limit the number of apps to ∼1.

Brett Viren (BNL) Wire Cell September 14, 2015 15 / 20

https://github.com/wirecell
http://wirecell.github.io/wire-cell-docs/

Build

Dependency Guidelines
iface

util

gen alg sst rio

I want to preserve these rules:

1 For “core” packages: util, iface, gen, alg
• only “big” external dependency is BOOST.
• No ROOT usage in library code, but OK for tests.
• Libs for sst, rio obviously must depend on ROOT
• Need ROOT-free: FFT, minimization, and ???

2 Implementation packages do NOT depend on each other!
• Library must only depend on iface!
• May use NamedFactory mechanism (think: “plugin”) to find

needed implementations (another talk).
• Again, tests may directly depend on other package.

Brett Viren (BNL) Wire Cell September 14, 2015 16 / 20

Still To Do

Packages

Execution Model

Build

Still To Do

Brett Viren (BNL) Wire Cell September 14, 2015 17 / 20

Still To Do

Going forward
• wire-cell-gen almost done

• Vehicle for solidifying high level concepts of data, interface
and execution model.

• Outside contribution possible soon.
• wire-cell-alg requires Xin’s expert effort

• Will need “training” to understand new structure. No breaking
stuff allowed this time! :)

• Near term: simple uniproc, execution model
• Multiproc using Boost.Pipeline (simple, but experimental

package)
• Multiproc using Intel TBB (complex, but established

package)
• Provides really cool/powerful Flow Graph Designer for

application visualization and performance tuning.
https://www.youtube.com/watch?v=K4BFpW1NAwo

Brett Viren (BNL) Wire Cell September 14, 2015 18 / 20

https://www.youtube.com/watch?v=K4BFpW1NAwo

Still To Do

Other stuff

In no particular order:
• Need to update documentation.

• The first “draft” wasn’t much more than a long README and
not very well organized.

• Doxygen build/deployment need automation
http://www.phy.bnl.gov/wire-cell/doxy/html/

• Understand TBB/Flow Graph Designer.
• Work with LArSoft people to get our requirements met.
• Eventually closeout “prototype” code.
• I’ll present Wire Cell software to BNL CSC on Sept 29th.

Brett Viren (BNL) Wire Cell September 14, 2015 19 / 20

http://www.phy.bnl.gov/wire-cell/doxy/html/

1000− 800− 600− 400− 200− 0 200 400 600 800 1000
1000−

800−

600−

400−

200−

0

200

400

600

800

1000

500− 400− 300− 200− 100− 0 100 200 300 400 500

400−

300−

200−

100−

0

100

200

300

400

x

5− 4− 3− 2− 1− 0 1 2 3 4 5

500−
400−

300−
200−

100−
0

100
200

300
400

500
500−
400−
300−
200−
100−

0

100

200

300

400

500

x

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10−
8−

6−
4−

2−
0

2
4

6
8

10
10−
8−
6−
4−
2−
0

2

4

6

8

10

Transverse Z direction
0 2 4 6 8 10 12 14 16 18 20

T
ra

ns
ve

rs
e

Y
 (

W
)

di
re

ct
io

n

10−

8−

6−

4−

2−

0

2

4

6

8

10

Pitch (thick) and wire (thin) red=U, blue=V, +X (-drift) direction into page

x

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10−
8−

6−
4−

2−
0

2
4

6
8

10
10−
8−
6−
4−
2−
0

2

4

6

8

10

Transverse Z direction
0 2 4 6 8 10 12 14 16 18 20

T
ra

ns
ve

rs
e

Y
 (

W
)

di
re

ct
io

n

10−

8−

6−

4−

2−

0

2

4

6

8

10

Pitch (thick) and wire (thin) red=U, blue=V, +X (-drift) direction into pagePitch (thick) and wire (thin) red=U, blue=V, +X (-drift) direction into page

Longitudinal direction
20− 0 20 40 60 80 100 120 140 160

T
ra

ns
ve

rs
e

di
re

ct
io

n

0

100

200

300

400

500

600

700

800

900

smear
Entries 9992

Mean x 66.93

Mean y 418.3

Std Dev x 47.48

Std Dev y 287.6

Integral 60

Skewness x 0.08671

Skewness y 0.165

 0 0 0

 0 59 0

 0 0 0

0

0.005

0.01

0.015

0.02

0.025
smear

Entries 9992

Mean x 66.93

Mean y 418.3

Std Dev x 47.48

Std Dev y 287.6

Integral 60

Skewness x 0.08671

Skewness y 0.165

 0 0 0

 0 59 0

 0 0 0

Smear

x

0
20

40
60

80
100

120

80−
60−

40−
20−

0
20

40

20−

10−

0

10

20

30

40

50

Z transverse direction
500− 400− 300− 200− 100− 0 100 200 300 400 500

Y
 tr

an
sv

er
se

 d
ire

ct
io

n

500−

400−

300−

200−

100−

0

100

200

300

400

500

Wires, red=U, blue=V, thicker=increasing indexWires, red=U, blue=V, thicker=increasing index

Transverse Z direction
500− 400− 300− 200− 100− 0 100 200 300 400 500

T
ra

ns
ve

rs
e

Y
 (

W
)

di
re

ct
io

n

500−

400−

300−

200−

100−

0

100

200

300

400

500

red=U, blue=V, +X (-drift) direction into pagered=U, blue=V, +X (-drift) direction into page

Transverse Z direction
0 2 4 6 8 10 12 14 16 18 20

T
ra

ns
ve

rs
e

Y
 (

W
)

di
re

ct
io

n

10−

8−

6−

4−

2−

0

2

4

6

8

10

Pitch (thick) and wire (thin) red=U, blue=V, +X (-drift) direction into pagePitch (thick) and wire (thin) red=U, blue=V, +X (-drift) direction into page

Brett Viren (BNL) Wire Cell September 14, 2015 20 / 20

	Packages
	Execution Model
	Build
	Still To Do

